
AD-R159 181 EARLY TRANSONIC IDEAS IN THE LIGHT OF LATER
DEVELOPNENTS(U) RENSSELAER POLYTECHNIC INST TROY mY
DEPT OF MATERIRLS ENGINEERING J D COLE 16 RUG 85UNCLASSIFIED RFOSR-TR-85-9694 RFOSR-82-9155 F/O 28/4 NL |

IElllllllll
Ill llfliIEillEllllE



- Q.2~~ .

vK

.1=

I I ,

125 1H K Air_!',

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANOAR*DS -1963- A

ft.

....... . -- . . . . . . . . . . . . . - .... . .,,.. . ._ ,q . . . . . . . . . . .



, , - .-- - - - - ..

Uhclassified
%ECU(lITY CLASSIFICATION OF THIS PAGE (Wen Date EntereO

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
- . I. REPORT NUMBER j2. GOVT ACCESSION NOs. RECIPIENT'S CATALOG NUMBER

AFOSR-TR. 0 69 4
4. TITLE (and Subtille) S. TYPE OF REPORT A PERIOD COVERED

Early Transonic Ideas in the Light of Later Technical
Developments S. PERFORMI% G ORO. REPORT NUMBER

0 7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(e)

Julian D. Cole AFOSR 82-0155

S. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

AREA & WORK UNIT NUMBERS
Department of Mathematical Sciences Q'\\o F 0(5 PI-

_Rensselaer Polytechnic Institute
Troy, New York 12180-3590

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFOSR/NM August 6, 1985
Bolling Air Force Base, DC 20332-6448 13. NUMBEROf PAGES

I4. MONITORING AGENCY NAME & ADDRESS(It different irom Controlling Office) 1S. SECURITY CLASS. (of Lie report)

Unclassified
IS. DECL ASSI FIC ATIONi DOWN GRADING

SCHEDULE

1. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il dIffrent 1rom Report)

NA

1S. SUPPLEMENTARY NOTES

19. KEY WORDS (Centinue on revers side if necessery and Identify by block nim ber)

Transonic
Aerodynamics

20 ABS. NACT (Conttne an reveree eld* if necesesry end identify by bloek n bef)

A survey is given of early ideas about transonic flo ndbrh
1 uJ current interpretation. D T IC

7 1 -ECTE
SEP 13 1985

DD IA 1473 EDITION OF I NOV. S SOSOLETED/ 010 2-LF01446601 tInc I ami fi d\ 2- 8ICURITY CLASSIFICATION OF THIS PAGE (1ken Doesla teor

" '" . " . " - -' - "



I ! II ! I _ l I .. .I j I " - ! w -' zw ... .. . . .. I

NTIS GRAOI

Early Transonic Ideas in the Light of Later Developments DTIC TAB
Unannounced

, Justificatio _
Julian D. Cole -

Department of Mathematical Sciences ,, Distributon/
Rensselaer Polytechnic Institute Availability Code

Troy, New York 12180 Aa nd,-" lAvail and/or
Dist Special

I. Introduction

In this lecture I am going to outline some of the early ideas about

transonic flow with which Hans W. Liepmann was associated and show how they

look in light of later developments.

The earliest ideas on transonic flow can be traced back to studies on

gasdynamics. Chaplygin's paperl in 1902 treated planar gas jets by the

hodograph method. Modern theoretical work connected to aeronautics dates from

the papers of von Karman 2, Guderley3 , and Frankl who all derived the approx-

*imate equation of transonic flow around 1946. Early experimental work was

carried out by Stack and Dryden at NASA Langley in the early '40's. Karmai's

paper represented the velocity potential * for flow past an airfoil (as in

Fig. 1) as a uniform flow at the critical speed a* plus a small disturbanc?

4 = a* i +

Assuming that, because of the transonic nature of the flow1 A_.. A__
ax ay

Karman derived the equation

a xx yy
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This basic nonlinear equation of changing type is at the heart of all

transonic theory. Karman also noted the similarity parameter

(effectively)

K =6 TI/C , M =U aMach number at infinity flight speed (2)
.2/3 - a. sound speed

and gave scaling rules for airfoil flows. Liepmann, Ashkenas, and Cole 4 gave

a more detailed derivation as well showing how including compression viscosity

can yield a viscous transonic equation which can have smooth solution even when

shocks are present. The shocks were shown to be thin, Res n Reynolds' number of

r the shock - 1.

Topics of considerable interest were the possibility of obtaining shock

free mixed subsonic-supersonic flows by the use of the hodograph method and the

"- physical significance of the limiting line; also the effects of the viscous

boundary layer on the inviscid flow, especially in shock wave-boundary layer

interactions. These are discussed below.

Another significant achievement of von Karman's was to bring Hans W.

* Liepmann to Caltech where he stimulated and influenced a whole generation of

students and created an early interest in transonic flow.

IIL Transonic Small-Disturbance Theory

The equations of transonic small-disturbance (TSD) theory can be regarded

as part of systematic limit process expansion. The starting point is the Euler

equation of inviscid compressible flow and the Rankine-Hugoniot jump conditions

- for shock waves, including the condition that the entropy increase. A typical

" geometry is shown (in transonic coordinates) in Fig. 2 where a vortex sheet

trails downstream of the lifting wing. The asymptotic expansion has the form 5

.................................... ....... -. . ..., ....'"Vi,""'''i'
* -'"-'-"-"."*"-*-..................................................................................................................................
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(1+ 62/3 u(x,3,i;K) + 64/3 u2 + ,,,) a v + S/3 2

+ I', v = (v,w) (3)

P = + 62/3 p+ see + 62/3 +

pp

The limit process has 6 + 0, M2 = 1- K62 /3  I with (x,; 61/3y, i = 61/3z,

1-M2
K = - fixed). Lengths are measured in terms of the typical wing chord c.

62/3

The span b should grow as 6 + 0 such that B = b61/3 is fixed. Timman 6, and

Krupp and Cole 7 showed how the ideas can be extended to unsteady flow with

a dimensionless time coordinate

=.U 62/3t (4)

c

The representative point (x,y,z) runs far from the body as (6 0 0, M, + 1)

for fixed (x,y,z) to express the fact of large lateral extent of disturbances

* near 14= 1. When the limit process expansion is substituted into the basic Euler

system it is shown that to this order, a disturbance potential *(x,y,z,t) exists

such that

" (L L) (5)a a!

This disturbance potential vanishes at upstream infinity and satisfies the basic

TSD equation

(K - (Y+l)$x)¢xx + 02 - 2*x 0 (6)

The pressure coefficient c a P-P is found from

Cp U - 2 62/3#x (71)

* .. S *..*.-'.-.. -. . -. .... .. . - . - -. ,- .. , . .. _ ... -,
., ..-.-. .. ," ' '." "-" * -lll 1 -llll 'lllll i..11 l l [S] [ l l n
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Some properties of the TSD equation are now summarized for steady flow in

two-dimensions

(K - (y+l)#x)#xx + # = 0 TSD eqn. (8)

The equation (8) is of changing type,

elliptic if (y+l)*x < K

hyperbolic if (y+l)# x > K

with flow that is locally subsonic or supersonic respectively. K = 0 corresponds

to sonic flow at infinity (M = 1 ). The local Mach number M can be shown to be

given by

1-N2
K - (y+l) M .I

X 2/3

*Q The typical structure of flow at a high subsonic Mach number is shown in Fig. 3

;. where a local supersonic (hyperbolic) region appears over an airfoil. The

supersonic region contains Mach lines or hyperbolic characteristics given by

.. ±y1 (9)
dx v(y+l)*x-K

and is terminated by a shock. The shock conditions are contained in the

conservation form corresponding to (8)

N - +1 *2) + (4-)- u 0 (10)
2 x

which is a version of the continuity equation. The shock is a discontinuity

surface across which #x, +i jump. The jump conditions are given by the

* integrated form of (10)

[K.x - 1x]dYs - [#Idxs  0 (1la)

and the condition that # is continuous

] 0 or [#x]dxs + [q*]ds - 0 (lib)

.........................................I I........'. =(.. " . . . I". ".....
•..............".--" ".'-''.'-'.'-.-'..-'-.'-7"'- -.'"-".."....".....,v....'...-...-,...-.-.-..-....................'........'-.. ..'....................
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Here (dxs , dys) are line elements in the shock surface.

[ ) - jump - )b- C )a , ( )b = quantity behind shock

( )a = quantity ahead of shock

Further the mass flux in the x-direction.

. I + 64/3(K Y+1 2) + "' 
(12)p,,

so that there is a maximum flux at local sonic speed (c.f. Fig. 4). The maximum

of the mass flux corresponds to the fact that stream tubes have throats at local

Mach number one. The TSD equations thus contain all the essential features of

flow.

II. Early GALCIT Experiments

A small transonic wind tunnel 2n x 20" was constructed in 1944-5 at GALCIT

*by Hans W. Liepmann and a series of interesting experiments were carried out in

this facility4 . Some of these are mentioned here and some in later sections.

Experiments were carried out in flow past a series of circular arc airfoils of

dimensions as in Fig. 5. Surface pressure distributions were re( Jrded and

Schlieren pictures taken. Fig. 6 shows a typical pressure distribution at

zero angle of attack (a - 0). The local supersonic zone is shown clearly as is

the substantial difference of the flow with laminar and turbulent boundary layers

on the surface. Turbulence was induced with a trip wire. For the turbulent case

in which the boundary layer is thinner the shock wave terminating the sonic

-- region is seen clearly. These features are run also in the Schlieren photographs

reproduced in Fig. 7.

IV. Numerical Methods

At the time of these experiments no reliable numerical methods existed for

calculating the ideal flow, although Emmons carried out some relaxation

* calculations for flows with local supersonic regions. Emmons' method however

-" .. . . ,, ,~ ~ ~ ~~~~~~~~~*....-. .... ....-,......,-,;...''.-.- .'- ..-' ",I-." '
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was inherently unstable and did not resolve shock waves. In the late 60's Emmons'

method was revised to eliminate these drawbacks8 and since then the method has

undergone substantial development. The use of multigrids has speeded convergence

and the basic ideas have been extended to the Euler equations. Here we describe

the original idea and present the results of a few calculations. Finite dif-

ference methods are used to solve numerically the boundary value problem for *

corresponding to flow past an airfoil. The best results are obtained by using

the conservative form (8)

- +1 #2)x + =0 (13)

and a corresponding conservative finite difference form. The essential boundary

conditions are (i) tangent flow at the airfoil surface

# Y (x, 0) = U, (x) 0 ( x < 1 (14)

*where y = 6 Fu,tE(x) represents the upper and lower surfaces respectively (ii)

vanishing of perturbations at infinity

x, y + 0 /x 2 +y2 + W (15)

(iii) Kutta condition that the flow leaves the trailing edge smoothly. In TSD

this requirement is equivalent to zero pressure loading at the tail or (c.f.7)

"•¢x
( '0+ )  =  x(I ,0 ")  (16)

The boundary value problem is shown in Fig. 8 where in addition it is noted

that there is a jump in # across the wake

[03 = *(x,O+) - *(x,O-) = r (17)

where u dx + v dy is the circulation. It is also noted that a,, asymptotic

.' .., ., . ..,*,. : . . . .*-. **** .* . . .. . . .. . , . _. . - .... . . . .. - - . ... . .. . ... ... -. ,
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far field exists which for subsonic flow has the form of a circulation
r .e + ,,, , e . tan "I vx (18)

Finite difference calculations are carried out on the (i,j) mesh indicated. A

conservative form is derived by considering fluxes around a central box. This

reasoning is extended so that the shock waves which appear spread over three or

four mesh points are consistent. For stability the difference scheme must be

chosen to be type sensitive. The solutions at (i,j) can be influenced only by

upstream points if the flow is locally supersonic (Ox > K/(y+I)), but by both

upstream and downstream points if the flow is locally subsonic. In the finite

difference approximations Ox at (i,j) can be calculated from a centered formula

- *(c) involving (i+1, i-1) or a backward formula #(b) involving (ii-2). When
x x
these agree an (i,j) can be designated subsonic or supersonic as indicated in Fig.

9. At subsonic points (13) provides an explicit equation for #ij in terms of

* neighbors on all sides, the computational star in Fig. 9. For supersonic points

.- however an implicit scheme is used involving only upstream points. Two other

kinds of points denoted as "sonic", which applies for points near the sonic line

where the flow accelerates and nshock" which applies for points where the flow

decelerates to subsonic through a shock are shown.

Since the problem is non-linear the local state is not known in advance and

*an iteration scheme is used. At a given iteration the difference schemes are

. chosen and the unknowns solved for on a vertical line. Sweeps are made in the

downstream direction. The analytical far field is used as a boundary condition but

the value of V is adjusted as the trailing edge is passed. To speed convergence

* the latest values are used whenever possible. The method converges well, gives the

* correct shock jumps, and for lifting cases automatically satisfies the Kutta

condition.

-. . . * . * . * . * . *
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Some results of calculations are shown in Fig. 10 and 11 for a parabolic

arc airfoil 9 and a NACA 001210. For the first the sonic line and shock appear

as well as the surface pressure. Figure 12[ 9  shows the flow field features for

a higher freestream Mach number where the main shock has moved aft of the airfoil

and a fishtail shock pattern appears.

V. Shock-free Supercritical Flows

The possibility of shock free flows past airfoils with local supersonic

regions was of considerable interest in the early days of transonic research.

This was stimulated by Ringleb's exact hodograph solution1l, analogous to

incompressible flow around a half-plane, which has a smooth transonic region.

Experimentally it was possible to produce a small shock-free supersonic zone in

the flow around a simple shape. For example see Fig. 13 where some of Liepmann's

- results are reproduced4.

Other exact solutions, analytical and numerical, were derived from hodograph

- considerations and gave shock free flow past special airfoil shapes. The hodogra.h

-. equations are linear so that solutions can be obtained and the airfoil shape fou.

* later. For the TSD system the hodograph ec. uations are obtained by a direct

interchange of dependent and independent vzriables. Re,-rite (8) as the system

:.J(19)

~y

where

w (y+l) x - K , v = (y+l)

* Then -Zw(

since w I 1v etc, and J - Jacobian - . From this, it is seen
ie x TV

~~~~~.. .. . ....... . . .... o, . °. o ° o ... .--. o. . .° -
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that the approximate stream function j(w,v) is given by a solution of Tricomi's

equation.

w~vv- iw =o (21)

This is the simplest linear equation of mixed type, elliptic in the subsonic

region w < 0, hyperbolic in the supersonic region w > 0. The exact potential

equation can be transformed in a similar way to produce Chaplygin's equation which

has properties analogous to (21).

Some special exact solutions for mixed flow past an airfoil were given by

Tomotika and Tamada 12. Recent advances have been the work of Nieuwland 13

which used Chaplygin functions to represent analytically families of airfoils and

Garabedian and Korn 14 who use a finite-difference hodograph method to obtain

numerical solutions of airfoil flows. The latter em.ploy real characteristics in

" the hyperbolic region and complex characateristics in the elliptic region and a

sufficient number of parameters to qenerate families of shapes with local subsonic

- zones. A typical airfoil and its pressure distribution in chock free flow is

- shown in Fig. 14. The pressure distribution is also calculated according to TSD

theory with a fully conservative relaxation scheme (FCR) as described in Sec. IV

and a non-conservative scheme (NCR)15 , as well as a calculation of Garabedian,

Korn & Jameson 16. The drag coefficient, which is theoretically zero (see next

section) is evaluated on several different control surfaces 15.

The smooth hodograph solutions are seen to be isolated solutions since a

smooth mixed flow can not be found when the boundary conditions in the physical

plane change slightly (Morawetz17). An edrly paper of Guderley18 suggests a

" singularity of a perturbation in the downstream corner of the sonic region. They

are isolated solutions in the same sense as the famous Busemann supersonic
-F

* biplane. When the conditions are changed slightly a neighboring solution is found

" with a shock wave. An example of the calculation of such a flow appears in

%*t2 .*2 12 **21

. . . . . **.%" * .. *. e
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Fig. 15, where the shock wave is apparent. Experiments verify these features.

Guderley3 suggests that the shocks in the local supersonic region are

initiated by an envelope formation of the compressive reflection of Mach lines

from the sonic line. A detailed look at the calculations of Fig. 10 verify this

idea9. Thus a shock free airfoil is one in which the shape of the sonic line

is just right so that no envelope is formed.

VI. Shock Waves and Drag

The connection of shock waves and drag was made explicit by Liepmann 19

in 1950 with a study of linearized supersonic flow past an airfoil. By

considering the weak shock waves in such a flow a correction to the Mach angle was

made for shock angle and location and the formula was found

Drag/(length) = p.T.f[S]dy (22)
shocks

where [S] = jump in specific entropy across a shock wave. Drag is related directly

to en*ropy production. Similar results appear later in works by von Karman 20

and Oswatitsch 21.

Analogous considerations apply to TSD flow. Germain 22 gave a derivation of

a drag formula for TSD theory starting from a local conservation law in two-

dimensions. The generalization to three-dimensional flow was given in5 and

reads

K !!2 - v2+w2 - "+1 u3) + (uv)~ + (uw)- - 0 (23)
2 2 3 x Y

This conservation law easily follows from the three-dimensional version of (8)

and the equation of irrotationality. The values of (uv) on 0 - are

proportional to the incremental drag for a planar system since the pressure

increment is proportional to u and the wing slope to v. Integration of (23) over

L'.' -'._ ..'..-." -'_-'_-,_-.:-", _,""."". " ". ',. .-.".,.-. .".. .. .. . . ... ... .... . . . . . . . .I.. . . . . .I.I i
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a control surface as shown in Fig. 16 yields a formula for drag. Since (23) is

not a physical global conservation law it is not conserved across shock waves.

Letting the control surface grow to infinity contributions from the shock and

vortex sheet remain. The result is

D = Drag = lim 22- - y+1 ff [u]3d -d (24)
p.U264/3c2  x+- -d z 12u

vortex drag shocks

The first term of (24) is the familiar expression for vortex drag in terms of the

kinetic energy in the wake while the second term, the wave drag is a scaled

version of the Liepmann formula. [u] is the jump of *x across the shock and the

entropy change is proportional to [u] 3. Thermodynamic considerations for weak

shocks show.

y+1 ff [u]3 dy dz - p.T fJ [S]dy dz (25)

shocks shocks

It should be noted that these simple results do not carry over for stronger

shocks. The drag-entrupy formula (24) can be used to provide a check or, the

consistency of numerical TSD calculations 15. In Fig. (17) the shock and flow

field for a parabolic arc at M., = .909 is shown. The f[u] 3dy - f[cp]3dy is

plotted also and the drag coefficient is computed both from the surface

pressure integral and the entropy jump. The result is

CD = .0315 surface pressure integration
(26)

CD = .0320 shock entropy integration

e
Careful calculations of TSD flow enable the wave drag to be found. An example of

an application is the flow past an NACA 64A010 airfoil in a slotted wall wind-

tunnel. The drag rise due to shock wave formation (CD0 friction drag) is

fairly well represented. See Fig. 18.

.. *-.,. * *. .. ....,.--.,.-.. .. . . . . .-.. ..- " .... : .'._-._ - -,- -'



-12-

VII. Sonic Flow and the Law of Stabilization

The flow at M. = 1 has a special structure elucidated first by Guderley and

Frankl. In order to understand this flow consider first the sequence of flow

patterns past an airfoil or body at free stream Mach numbers close to one, Fig.

19. At high subsonic Mach numbers a large supersonic zone is formed terminated

by an oblique shock near the trailing edge and the fishtail shock, as calculated

in Fig. 12. At M. = 1, the supersonic zone in the sequence of steady flows grows

to infinity and the fishtail shock goes to downstream infinity. A limit charac-

teristic or Mach wave appears which is asymptotically parallel to both the sonic

line and the tail shock at infinity. This limit characteristic divides the flow

field into an upstream and downstream part. Any (infinitesimal) disturbance in

the flow, in the supersonic region, for example, can send a disturbance downstream

which eventually reaches the sonic line and affects the entire subsonic region.

Any disturbance originating downstream of the limit characteristic can not affect

the upstream flow. The flow in the upstream section up to the limit characte-

istic thus has an elliptic nature and must be calculated all at once. It is

effectively independent of the flow dcwnstream of this characteristic. :ow.rs3m

of the limit characteristic the flow can, for example, be calculated as in a

" hyperbolic region by the method of characteristics. When the free stream c.-.mas

slightly supersonic a detached shock wave which has subsonic flow behind neir the

axis ( =O) appears ahead of the body. The flow becomes supersonic near the

airfoil and terminates again in an oblique tail shock. It can thus be noted "'at

the flow in the neighborhood of the body does not change qualitatively very much

since the oncoming flow is always close to a uniform subsonic flow.

For M, - 1, the far-field is a similarity solution. With K = 0 (8) becomes,

*for the planar case

(Y+1)*xoxx - * 0 (27)

mhum
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The far-field can be thought of as being produced by a singularity at the

origin and, due to non-linearity, represented in the form

UK-2 (28):Y II
(-Y+l)Wx~y) - Y,<- f (t;C), . x 28

a one-parameter family of similarity solutions.' Thus note

(y+1)=x = j2c-2 f,() . (y+l)fxx = ;K-2 f.(t) (29)

f(E;K) is thus found from

(f-.K2&2)f, - 5K(1-c)tf' + 3(1-K)(3i-2)f=0, C < 9L (30)

The coordinates are illustrated in Fig. 20. The flow must start at infinity

decelerating and spreading around the body, then accelerate through soni: and

smoothly through the limit characteristic. It can be seen from (29) that the

sonic line (f'=O) as well as the limit characteristic and tail shock must

* lie on similarity curves &,L, and Es respectively. The characterisic

condition (+) (29) becomes

f()= 242  (31)
L

f also must be symmetric in j, the apparent thickness ef-;ec: dominat*' ."e

flow at infinity. This occurs because both acceleration !nd deceler-.:iJ:i of a

sonic flow produces a widening of stream tubes (cf Fig. 4), One con::-,...

of integration remains if integration is started at & - - and two ::nr_";ions

must be satisfied at the limit characteristic if f"(L) is to be fin"*e. Thus

the solution exists only for a special of i. Guderley siowed from the

hodograph solution that

IK 4 planar case (32)

.

. . . . . . . .. . .

• • . • . • . .. ". .- . .- -t . .- .- ." • m o . . . • % % % "
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and by numerical integration that K - 4 for the analogous axisymmetric case.
:' 7

The latter result was shown to be exact by various writers e.g. 23. Eqn. (30)

has a group property so that the solution can be written

f(C) F( ), A = const. (33)
A3

The scale factor A depends on the size (and shape) of the body. Thus the

far-field can be standardized to have CL = 1. By considering shock jumps the

solution can be continued to downstream infinity. A particularly useful

representation of the solution was given parametrically by Frankl
24

f(s) al' S-1/5 ( S + a 1  2933 34

~(34)

C(s) = al1/5s-2/5 (s -
w"S

where the following relationships are noted

9 € -- 0 CL = 1 Cs

(35)
s 0 1 1 4/3 1 (5/" + 8)

2 _g

Frankl produced this result by clever observations about special hodograph

solutions; an analogous result has been derived by inspection in the

axisymmetric case.

A useful extension of the far-field (28) is to regard it as the first term

of an expansion of the form

(Y+1)#(x,Y) -2/5 1 f(A&) + C yo f0(A&) + C" 1 fl(AC) (36)

y A3  0 A3  1 A3

valid as * - for C fixed. The perturbation functions fi g, i 0 0, 1

satisfy the variational equation (with 0i W a)

pS

_~~~~~~~..-".--.-...-'.-".--.'....... ............ ,-...........- -. ". '- ". ... AA-""".:..... " "". .... A" A" "

.. . . .. .- .,- .- .. .. .- .'. .. ._' .. *... i,~ . . .. . . .,, . . .Am i " + . . . .;
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(f' -l16 2) + (f" +A (2a -. 2)g' - a(a - 1)g -0 (37)
25 5 5

If g = s-a/2 h(t), t = 3 s (37) becomes a standard hypergeometric equation

t(-t)h 1. 1 (5a + 4)t)h' + 5 a(5a - 2)h - 0 (38)
2 3 12
- t< < EL I

in the interval - 1 . The two linearly independent solutions

around t = 0 are

h F F(.1 a, 1 (2-5m); I;t)
1 2 6 2

(39)
1

h = t2  F(1 (5a+1), 5 (1-0); 3;t)
11 7 1

Thus solutions smooth on passing through the limit characteristic are given by

the spectrum

3,: .... 2 1 2 8 11 14 ...
5(40)

For the expansion near infinity a - 0, a "1 and tie fi are simple.

.* functions.

The solutions just discuzsed can be u:ad to relate a flow with a

free-stream Mach number close to one to that at Mach nuirber one. In Tr- form

this relates a flow with small IKI to that with K = 0. For flow sub.or.: at

infinity the dominant term in the far-field is the circulation term, basically

the solution which decays most slcwly for'

K # + #yy z 0 + (41)
xx2

But for K - 0 the far-field is given by (26) with K _ . Thus there is a non-

uniformity at Infinity of *(x,;;K) as K 0 and inner and outer expansiors are

* ... . • • . .- . " ""... * "'- . . S"t. . " -" *". ". " .- " . '. . . . .- " ; '''
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needed. For the inner expansion valid near the airfoil the first term is sonic

flow past the airfoil and corrections are sought. In early work Liepmann and

Bryson25 proposed that at M. = 1 the local Mach number on a body does not

change as the free stream Mach number changes near one because of the

qualitative ideas outlined above. The Law of Stabilization proposed by

Ryzhov and Lipschitz26 and the more detailed work of Cook and Ziegler27 following

the method of matched asymptotic expansion indicated in28 give a deeper and

more precise description of this Mach number freeze. The starting point is a

solution at & = 1 and several are available, for example, for a wedge Guderley

and Yoshihara3 gave the result while Tse 2 9 worked out lifting airfoils at

N. = 1. Both of these methods rely on a hodograph formulation. Let **(x,y)

v represent the sonic flow past an airfoil with the far-field (28). Then the flow

*- for K > 0 is represented as an inner expansion, generated from a limit process

K-* 0, x,y fixed.

*(xy;K) - **(x,y) + K.x.+ c(K) *c (xy) + '" (42)

Y+1

E (K) is the order of magnitude of the correction which is sought and *c(x,;)

is the correction potential. **(x,y) satisifes the sonic TSD eqn (25) and its

boundary conditions while *c(x,Y) is found from the variational equation

(y+O) * *c + * #cx) *c" - 0 (43)
x xx xx x yy

'I

The expansion (42) is not valid near infinity so that an outer expansion in

rescaled variables is sought

#(x,y;K) o(K) + ''' (44)

* .. . . . . .* . ... ,.,
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The associated limit process has ,j fixed as K + 0, x,y - , that is

=u(K)x. v(K) , v + 0.

The condition that the rescaled equation be subsonic at infinity but still

nonlinear and of changing type produces a one parameter family of flows.

*(x y;K) - K j(jJ,) + ' with v =- " (45)
F--)

with the resulting version of the TSD equation

(1 - (Y+l)ix)ixx + iyy a 0 (46)

The inner and outer expansions must match and in a simple way as x,y . -

Sj 0 O. #* is defined along similarity curves which then must match

x K2 5  •
= 1 5 1/5 4/

Thus P K2 , R K2 x,; = K5/ 2 y The general form of the flow as it looks in

outer variables is shown in Fig. 21. Higher terms in the flow near infinity

for the inner and the flow near the origin in the outer expansion (42),(45)

then depend on the spectrum associated with (37).

These expansions can then be written (with the scale factor A - 1)

#.~.* 1 F2/5 f(C)+Co + -1/5 f + ,,, + Kx

+ e(K) c(Xj)+ ' (47a)

inner

SI 2/5 f() + j + C1 j 8/5t i(&) + ,i, outer (47b)

A comparison of these two as 0, * 0, x, ; - along similarity curves shows that

#,(x,;) has similarity form at infinity and that

~~~~~~~~~~~~~~~~~~~... .. ....... .-..,......•. ...-.... .-..-....... :-....-.. ..... ...-.....-......... ...... ............ _-

_ ,,,...:,..:.,': ,..,,.........,..-;..:,,\. .,. , -. '..,.. . . ..,.,..".-. ., ,.. . . . . . . . . . . . . .,,,. . ..m m . . .." * .nT.ml*.1*I .m m m . m. m.
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e(K) = K3 = '- (48)
62

This weak dependence on deviation from M. = 1, for the potential and

pressure distribution is the essential part of the law of stabilization. The

term K x in these expansions represents the change of the flow at infinity
n +d +1 

22
and adds a constant pressure level to the solution. Germain derived a

conservation law formula for the scale factor A relating it to properties of the

solution (not known in advance) on the body surface. Cook and Ziegler 27 have

extended these ideas to find C The boundary value problem for the inner

correction solution is sketched in Fig. 22. An empirical fit of the Law of

Stabilization to some experimental drag measurements of Vincenti 30 is drdwn in

Fig.22.

VIII. Concluding Remarks

TSD theory ard calculations have made great studies in the last 35 years

" based on the work of the pioneers. The understanding of the physical phenomena

that has been thus achieved enables us to go forward with more elaborate

"; calculations and including more physical effects. One can only admire the deep

insight of the early workers in this area such as H.W. Liepmann.

"Research sponsored by the Air Force Office of Scientific Research, Air

Force Systems Command, USAF, under Contract/Grant No. AFOSR-82-0155. The United

States Government is authorized to reproduce and distribute reprints for Govern-

mental purposes notwithstanding any copyright notation thereon."

I"3
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